Коэффициент корреляции

Использование MS EXCEL для расчета ковариации

Ковариация

близка по смыслу с (также является мерой разброса) с тем отличием, что она определена для 2-х переменных, адисперсия — для одной. Поэтому, cov(x;x)=VAR(x).

Для вычисления ковариации в MS EXCEL (начиная с версии 2010 года) используются функции КОВАРИАЦИЯ.Г() и КОВАРИАЦИЯ.В() . В первом случае формула для вычисления аналогична вышеуказанной (окончание

обозначаетГенеральная совокупность ), во втором – вместо множителя 1/n используется 1/(n-1), т.е. окончание обозначаетВыборка .

Примечание

: Функция КОВАР() , которая присутствует в MS EXCEL более ранних версий, аналогична функции КОВАРИАЦИЯ.Г() .

Примечание

: Функции КОРРЕЛ() и КОВАР() в английской версии представлены как CORREL и COVAR. Функции КОВАРИАЦИЯ.Г() и КОВАРИАЦИЯ.В() как COVARIANCE.P и COVARIANCE.S.

Дополнительные формулы для расчета ковариации

=СУММПРОИЗВ(B28:B88-СРЗНАЧ(B28:B88);(D28:D88-СРЗНАЧ(D28:D88)))/СЧЁТ(D28:D88)

=СУММПРОИЗВ(B28:B88-СРЗНАЧ(B28:B88);(D28:D88))/СЧЁТ(D28:D88)

=СУММПРОИЗВ(B28:B88;D28:D88)/СЧЁТ(D28:D88)-СРЗНАЧ(B28:B88)*СРЗНАЧ(D28:D88)

Эти формулы используют свойство ковариации

Если переменные x

иy независимые, то их ковариация равна 0. Если переменные не являются независимыми, то дисперсия их суммы равна:

VAR(x+y)= VAR(x)+ VAR(y)+2COV(x;y)

А дисперсия

их разности равна

VAR(x-y)= VAR(x)+ VAR(y)-2COV(x;y)

Коэффициент корреляции в Excel: что это, как рассчитать? Формула, пример, анализ данных онлайн

Корреляционный анализ

Корреляционный анализ — метод обработки статистических данных, с помощью которого измеряется теснота связи между двумя или более переменными. Корреляционный анализ тесно связан с регрессионным анализом (также часто встречается термин «корреляционно-регрессионный анализ», который является более общим статистическим понятием), с его помощью определяют необходимость включения тех или иных факторов в уравнение множественной регрессии, а также оценивают полученное уравнение регрессии на соответствие выявленным связям (используя коэффициент детерминации).

Ограничения корреляционного анализа


Множество корреляционных полей. Распределения значений (x,y){\displaystyle (x,y)} с соответствующими коэффициентами корреляций для каждого из них. Коэффициент корреляции отражает «зашумлённость» линейной зависимости (верхняя строка), но не описывает наклон линейной зависимости (средняя строка), и совсем не подходит для описания сложных, нелинейных зависимостей (нижняя строка). Для распределения, показанного в центре рисунка, коэффициент корреляции не определен, так как дисперсия y равна нулю.

  1. Применение возможно при наличии достаточного количества наблюдений для изучения. На практике считается, что число наблюдений должно не менее чем в 5-6 раз превышать число факторов (также встречается рекомендация использовать пропорцию, не менее чем в 10 раз превышающую количество факторов). В случае если число наблюдений превышает количество факторов в десятки раз, в действие вступает закон больших чисел, который обеспечивает взаимопогашение случайных колебаний.
  2. Необходимо, чтобы совокупность значений всех факторных и результативного признаков подчинялась многомерному нормальному распределению. В случае если объём совокупности недостаточен для проведения формального тестирования на нормальность распределения, то закон распределения определяется визуально на основе корреляционного поля. Если в расположении точек на этом поле наблюдается линейная тенденция, то можно предположить, что совокупность исходных данных подчиняется нормальному закону распределения..
  3. Исходная совокупность значений должна быть качественно однородной.
  4. Сам по себе факт корреляционной зависимости не даёт основания утверждать, что одна из переменных предшествует или является причиной изменений, или то, что переменные вообще причинно связаны между собой, а не наблюдается действие третьего фактора.

Область применения

Данный метод обработки статистических данных весьма популярен в экономике, астрофизике и социальных науках (в частности в психологии и социологии), хотя сфера применения коэффициентов корреляции обширна: контроль качества промышленной продукции, металловедение, агрохимия, гидробиология, биометрия и прочие. В различных прикладных отраслях приняты разные границы интервалов для оценки тесноты и значимости связи.

Популярность метода обусловлена двумя моментами: коэффициенты корреляции относительно просты в подсчете, их применение не требует специальной математической подготовки. В сочетании с простотой интерпретации, простота применения коэффициента привела к его широкому распространению в сфере анализа статистических данных.

Что такое корреляция валютных пар и как она рассчитывается

Как следствие, ситуация, когда графики различных валютных пар практически полностью повторяются или является зеркальным отражением один другого, является довольно распространенной. Таким образом, учитывая влияние одних валютных пар на другие, можно не только уменьшать валютный риск, но и увеличивать доходы, более эффективно управляя своей позицией и избегая открытие таких позиций, которые приводят к получению взаимно противоположного результата.

Для оценки степени этого воздействия используют корреляционный анализ. Корреляция валютных пар характеризует меру статистической взаимосвязи между ними. Ее оценку можно провести с помощью линейного коэффициента корреляции Пирсона, который определяет степень линейной связи между двумя наборами данных и рассчитывается по следующей формуле:

X,Y — могут быть, например, валютные пары. 

Динамика дневных цен закрытия FOREX по парам EUR/USD и USD/CHF с 03.01.2011 по 30.12.2011 гг.

Коэффициент корреляции приобретает значения от -1 до 1, благодаря чему отражает не только плотность (тесноту) связи, а и ее направление. Чем ближе |rxy| к 1, тем более тесная связь наблюдается между исследуемыми признакам. Если rxy = 0, то это свидетельствует об отсутствии линейной связи, однако между признаками может существовать нелинейная связь.

Качественная оценка корреляционной связи может быть осуществлена с использованием таблицы Чедока:

Значение коэффициента корреляцииХарактер связи
rxy = 0

нет

0.1 < |rxy| < 0.3 слабая
0.3 < |rxy| < 0.5 умеренная
0.5 < |rxy| < 0.7 заметная
0.7 < |rxy| < 0.9высокая
0.9 < |rxy| < 1очень высокая
|rxy| = 1функциональная

Для осуществления оценки линейного коэффициента корреляции можно воспользоваться таблицей ниже:

Значение коэффициента корреляцииТип связиИнтерпретация
rxy = 0 нетизменение Х не влияет на изменение Y
0 < rxy < 1прямаяс увеличением Х увеличивается У и наоборот
-1 > rxy > 0обратнаяс увеличением Х уменьшается У и наоборот
rxy = ±1функциональнаяХ и У полностью совпадают

Если объяснить более простым языком, то корреляция — не что иное, как связь между разными видами валют или других финансовых активов. Она представляет собой изменения относительно их стоимости по отношению друг к другу в определенный период времени. Такие изменения вычисляются с помощью коэффициента в диапазоне от +1 до -1. Положительный показатель говорит о том, что обе финансовые величины перемещаются в одном направлении и отрезка времени. Отрицательное значение указывает на то, что финансовые величины, наоборот, между собой удаляются и двигаются в противоположных направлениях в 100% таймфреймов. Случается, когда это значение равно нулю. Это говорит о том, что валютные активы не взаимодействуют друг с другом и могут быть связаны лишь случайным образом.

Реальные причины корреляции и возможные гипотезы

Курс доллара и стоимость нефти отрицательно коррелируют. Можем выдвинуть гипотезу: повышение цен на черное золото вызывает падение стоимости американской валюты. Но почему так происходит? Откуда взялась связь между этими явлениями?

Определение причины корреляции – это очень сложная задача. Переплетаются тысячи различных факторов, часть из которых скрыта.

Возможно, дело в том, что США – крупнейший потребитель нефти в мире. Каждый день они импортируют около 7,2 миллиона баррелей. Снижение цены на черное золото – хорошо для американской экономики, ведь позволяет тратить меньше денег. Следовательно, доллар растет.

Корреляция предоставляет возможность сделать вывод из статистических данных.

Например, мы выяснили, что существует отрицательная взаимосвязь между доходом персонала и его эффективностью в работе. Наша гипотеза: «Лентяи и бездельники получают больше, чем ответственные сотрудники». Тогда мы пересмотрим систему мотивации и избавимся от бесполезных людей.

Гипотеза – это лишь статистический вывод, предположение. Она вполне может оказаться ошибочной.

Согласно статистике, чем больше пожарных участвует в тушении огня, тем существенней размер ущерба. Какую гипотезу можем сделать отсюда? Пожарные приносят вред, давайте сократим их! Но если разобраться, то настоящая причина повреждения – это огонь. А увеличение числа лиц, задействованных в его тушении, – следствие масштаба пожара.

Наша вселенная бесконечна, а значит всегда можно найти несколько переменных, которые будут коррелировать между собой, несмотря на полное отсутствие причинно-следственных связей. Даже самое буйное воображение не сможет объяснить, что объединяет сыр и одеяло-убийцу:

Более подробно на эту тему смотрите в видео:

Диаграмма рассеяния в Excel и сферы ее применения

​ факторов на которую​ Только тогда необходимые​ разбиты построчно, то​ который представлен в​ таблицу, в которой​ её исключает, поскольку​ y и х2.​ с ее помощью.​ коэффициент расположился около​ на вертикальной.​ в этих парах​Рассмотрим, как с помощью​ внимание на R-квадрат​ количество уволившихся сотрудников.​9​ программы Microsoft Excel​С помощью других настроек​ мы пытаемся изучить.​ для этой процедуры​ тогда следовало бы​ пакете анализа. Но​. ​ помесячно расписана в​ построена диаграмма зависимости​ Изменения значений происходят​ Вызываем мастер функций.​ 0, то говорят​Для построения диаграммы рассеяния​ можно изучать по​ средств Excel найти​ и коэффициенты.​ Необходимо определить зависимость​2​ довольно просто составить​ можно установить метки,​ В нашем случае,​

​ помесячно расписана в​ построена диаграмма зависимости​ Изменения значений происходят​ Вызываем мастер функций.​ 0, то говорят​Для построения диаграммы рассеяния​ можно изучать по​ средств Excel найти​ и коэффициенты.​ Необходимо определить зависимость​2​ довольно просто составить​ можно установить метки,​ В нашем случае,​

Что показывает диаграмма рассеяния

​ инструменты появятся на​ переставить переключатель в​ прежде нам нужно​ отдельных колонках затрата​ Y от её​ параллельно друг другу.​ Находим нужную. Аргументы​ об отсутствии связи​ в Excel выделим​ отдельности. Как одномерную​ коэффициент корреляции.​R-квадрат – коэффициент детерминации.​ числа уволившихся сотрудников​

  1. ​7​ таблицу регрессионного анализа.​
  2. ​ уровень надёжности, константу-ноль,​
  3. ​ это количество покупателей.​ ленте Эксель.​

​ позицию​ этот инструмент активировать.​ на рекламу и​ порядкового номера -​ Но если y​ функции – массив​ между переменными.​

Построение диаграммы рассеяния в Excel

​ совокупность. Но реальный​Для нахождения парных коэффициентов​ В нашем примере​ от средней зарплаты.​4​ Но, работать с​ отобразить график нормальной​ Значение​Перемещаемся во вкладку​«По строкам»​Переходим во вкладку​ величина продаж. Нам​ не более.​ растет, х падает.​ значений y и​

​Если значение близко к​ продаж» (включая заголовки).​ результат получается лишь​

​ применяется функция КОРРЕЛ.​ – 0,755, или​Модель линейной регрессии имеет​12​ полученными на выходе​ вероятности, и выполнить​x​«Файл»​.​«Файл»​

​ предстоит выяснить степень​Guest​ Значения y увеличиваются​ массив значений х:​ единице (от 0,9,​ Перейдем на вкладку​ при изучении обоих​Задача: Определить, есть ли​ 75,5%. Это означает,​ следующий вид:​

​5​ данными, и понимать​ другие действия. Но,​

​– это различные​.​В параметрах вывода по​.​ зависимости количества продаж​: Как вы изменили​ – значения х​Покажем значения переменных на​ например), то между​

​ «Вставка» в группу​ измерений, взаимосвязи между​ взаимосвязь между временем​ что расчетные параметры​У = а​15​ их суть, сможет​

​ в большинстве случаев,​ факторы, влияющие на​Переходим в раздел​ умолчанию установлен пункт​В открывшемся окне перемещаемся​

​ от суммы денежных​ горизонтальную ось? Почему​

​ уменьшаются.​ графике:​ наблюдаемыми объектами существует​

exceltable.com>

9.1.3. Простая линейная регрессия

Применение линейного регрессионного анализа имеет специфические черты по сравнению с другими методами обработки данных. Его непосредственное употребление ограничено, в основном, задачами о предсказании значений зависимой переменной по известным значениям аргумента (или аргументов), что в психологии задача не слишком востребованная. Однако, во-первых, линейная регрессия входит как часть во многие другие методы (например, анализ медиации и модерации, о которых речь пойдет в следующей главе), и, во-вторых, служит простым примером отыскания наилучших параметров для модели определенного типа, и психологу полезно понимать суть этого метода. Качество каждого набора параметров, а затем и модели в целом, оценивается процентом дисперсии, который остался вне предсказаний, сделанных моделью по данным значениям аргументов. Замечательным результатом для читателя будет здесь улавливание аналогий с двухфакторным дисперсионным анализом.

Как вы можете рассчитать корреляцию с помощью Excel? — 2019

a:

Корреляция измеряет линейную зависимость двух переменных. Измеряя и связывая дисперсию каждой переменной, корреляция дает представление о силе взаимосвязи. Или, говоря иначе, корреляция отвечает на вопрос: сколько переменная A (независимая переменная) объясняет переменную B (зависимую переменную)?

Формула корреляции

Корреляция объединяет несколько важных и связанных статистических понятий, а именно дисперсию и стандартное отклонение. Разница — дисперсия переменной вокруг среднего, а стандартное отклонение — квадратный корень дисперсии.

Формула:

Поскольку корреляция требует оценки линейной зависимости двух переменных, то, что действительно необходимо, — это выяснить, какая сумма ковариации этих двух переменных и в какой степени такая ковариация отраженные стандартными отклонениями каждой переменной в отдельности.

Общие ошибки с корреляцией

Самая распространенная ошибка — предполагать, что корреляция, приближающаяся +/- 1, статистически значима. Считывание, приближающееся +/- 1, безусловно увеличивает шансы на фактическую статистическую значимость, но без дальнейшего тестирования это невозможно узнать.

Статистическое тестирование корреляции может усложняться по ряду причин; это совсем не так просто. Критическое предположение о корреляции состоит в том, что переменные независимы и связь между ними является линейной.

Вторая наиболее распространенная ошибка — забыть нормализовать данные в единую единицу. Если вычислять корреляцию по двум бетам, то единицы уже нормализованы: сама бета является единицей

Однако, если вы хотите скорректировать акции, важно, чтобы вы нормализовали их в процентном отношении, а не изменяли цены. Это происходит слишком часто, даже среди профессионалов в области инвестиций

Для корреляции цен на акции вы, по сути, задаете два вопроса: каково возвращение за определенное количество периодов и как этот доход коррелирует с возвратом другой безопасности за тот же период? Это также связано с тем, что корреляция цен на акции затруднена: две ценные бумаги могут иметь высокую корреляцию, если доход составляет ежедневно процентов за последние 52 недели, но низкая корреляция, если доход ежемесячно > изменения за последние 52 недели. Какая из них лучше»? На самом деле нет идеального ответа, и это зависит от цели теста. ( Улучшите свои навыки excel, пройдя курс обучения Excel в Академии Excel. ) Поиск корреляции в Excel

Существует несколько методов расчета корреляции в Excel

Самый простой способ — получить два набора данных и использовать встроенную формулу корреляции:

Это удобный способ расчета корреляции между двумя наборами данных. Но что, если вы хотите создать корреляционную матрицу во множестве наборов данных? Для этого вам нужно использовать плагин анализа данных Excel. Плагин можно найти на вкладке «Данные» в разделе «Анализ».

Выберите таблицу возвратов. В этом случае наши столбцы имеют названия, поэтому мы хотим установить флажок «Ярлыки в первой строке», поэтому Excel знает, как обрабатывать их как заголовки. Затем вы можете выбрать вывод на том же листе или на новом листе.

Как только вы нажмете enter, данные будут автоматически сделаны. Вы можете добавить текст и условное форматирование, чтобы очистить результат.

Анализ полученных результатов

После корректного заполнения всех параметров и нажатия кнопки OK отобразятся результаты анализа (в зависимости от выбранного способа). В нашем случае – на отдельном листе.

Ключевым показателем здесь является R-квадрат (коэффициент детерминации), значение которого характеризует качество модели. Приемлемым считается значение не менее 0,5 (или 50%).

Также следует обратить внимание на ячейку, расположенную на пересечении строки “Y-пересечение” и столбца “Коэффициенты”. Здесь показывается, каким будет значение Y (количество осадков), если все остальные факторы будут равны нулю

Ячейка на пересечении строки “Переменная X 1” и столбца “Коэффициенты” содержит значение, характеризующее степень зависимости Y от X. Коэф. 0,89 в нашем случае говорит о достаточно сильной связи между переменными.

Блог о программе Microsoft Excel: приемы, хитрости, секреты, трюки

В сегодняшней статье речь пойдет о том, как переменные могут быть связаны друг с другом. С помощью корреляции мы сможем определить, существует ли связь между первой и второй переменной. Надеюсь, это занятие покажется вам не менее увлекательным, чем предыдущие!

Корреляция измеряет мощность и направление связи между x и y. На рисунке представлены различные типы корреляции в виде графиков рассеяния упорядоченных пар (x, y). По традиции переменная х размещается на горизонтальной оси, а y — на вертикальной.

График А являет собой пример положительной линейной корреляции: при увеличении х также увеличивается у, причем линейно. График В показывает нам пример отрицательной линейной корреляции, на котором при увеличении х у линейно уменьшается. На графике С мы видим отсутствие корреляции между х и у. Эти переменные никоим образом не влияют друг на друга.

Наконец, график D — это пример нелинейных отношений между переменными. По мере увеличения х у сначала уменьшается, потом меняет направление и увеличивается.

Оставшаяся часть статьи посвящена линейным взаимосвязям между зависимой и независимой переменными.

Коэффициент корреляции

Коэффициент корреляции, r, предоставляет нам как силу, так и направление связи между независимой и зависимой переменными. Значения r находятся в диапазоне между — 1.0 и + 1.0. Когда r имеет положительное значение, связь между х и у является положительной (график A на рисунке), а когда значение r отрицательно, связь также отрицательна (график В). Коэффициент корреляции, близкий к нулевому значению, свидетельствует о том, что между х и у связи не существует график С).

Сила связи между х и у определяется близостью коэффициента корреляции к — 1.0 или +- 1.0. Изучите следующий рисунок.

График A показывает идеальную положительную корреляцию между х и у при r = + 1.0. График В — идеальная отрицательная корреляция между х и у при r = — 1.0. Графики С и D — примеры более слабых связей между зависимой и независимой переменными.

Коэффициент корреляции, r, определяет, как силу, так и направление связи между зависимой и независимой переменными. Значения r находятся в диапазоне от — 1.0 (сильная отрицательная связь) до + 1.0 (сильная положительная связь). При r= 0 между переменными х и у нет никакой связи.

Мы можем вычислить фактический коэффициент корреляции с помощью следующего уравнения:

Ну и ну! Я знаю, что выглядит это уравнение как страшное нагромождение непонятных символов, но прежде чем ударяться в панику, давайте применим к нему пример с экзаменационной оценкой. Допустим, я хочу определить, существует ли связь между количеством часов, посвященных студентом изучению статистики, и финальной экзаменационной оценкой. Таблица, представленная ниже, поможет нам разбить это уравнение на несколько несложных вычислений и сделать их более управляемыми.

Как видите, между числом часов, посвященных изучению предмета, и экзаменационной оценкой существует весьма сильная положительная корреляция. Преподаватели будут весьма рады узнать об этом.

Какова выгода устанавливать связь между подобными переменными? Отличный вопрос. Если обнаруживается, что связь существует, мы можем предугадать экзаменационные результаты на основе определенного количества часов, посвященных изучению предмета. Проще говоря, чем сильнее связь, тем точнее будет наше предсказание.

Использование Excel для вычисления коэффициентов корреляции

Я уверен, что, взглянув на эти ужасные вычисления коэффициентов корреляции, вы испытаете истинную радость, узнав, что программа Excel может выполнить за вас всю эту работу с помощью функции КОРРЕЛ со следующими характеристиками:

КОРРЕЛ (массив 1; массив 2),

массив 1 = диапазон данных для первой переменной,

массив 2 = диапазон данных для второй переменной.

Например, на рисунке показана функция КОРРЕЛ, используемая при вычислении коэффициента корреляции для примера с экзаменационной оценкой.

Таблица корреляции валютных пар контрактов CFD и металлов

Корреляцией валютных пар на рынке Форекс называется свойство нескольких инструментов совершать однотипные, совпадающие по времени, ценовые движения. Пары, чьи тренды движутся в одном направлении – обладают положительной или прямой корреляцией. Зеркальное копирование или противоположное одновременное расхождение котировок называется отрицательной корреляцией.

Мерой оценки совпадения движений двух инструментов служит коэффициент, определяемый по формуле:

Из формулы видно, что величина С может принимать положительные/отрицательные значения в пределах множества, ограниченного цифрами от -1 до +1 и быть рассчитана для разных промежутков времени – периодов.

Чтобы понять, насколько точны совпадения изменений котировок одной валютной пары относительно другой – можно перейти на процентный вид корреляции, где 1 (или -1) будет означать 100% идентичность, т.е. свечи закрываются тик в тик.

Сервис представляет собой таблицу числовых коэффициентов корреляции. Трейдер выбирает актив в крайнем левом верхнем окне, относительно других инструментов: валютных пар, контрактов CFD и металлов.

По умолчанию таблица покажет корреляцию по всему списку, на всех промежутках времени от часа до года. Чтобы произвести выборку, надо воспользоваться фильтром, кликнув по столбцам, которые не представляют интереса.

Числовые значения коэффициентов раскрашены в холодные и теплые цвета, где насыщенный синий цвет соответствует 100% обратной, а красный – 100% прямой корреляции.

Под таблицей представлена сводная выборка коэффициентов корреляции по выбранному инструменту, ограниченная порогом значений от 1 до 0,8% (по модулю). Представленные ниже два графика разбивают этот промежуток на симметричные части 1-0,9% и 0,9-0,8%, а третий собирает отдельно валютные пары CFD и металлы с обратной корреляцией (с учетом поставленных фильтров выбора инструментов).

Будьте внимательны! На выборке по умолчанию стоит «часовой» фильтр. Чтобы адекватно составить мнение о существовании взаимосвязи в котировках — выбирайте годовое значение.

Корреляция различных инструментов Форекс применяется для создания стратегий парного трейдинга, поиска котировок-поводырей, играющих роль индикатора, или краткосрочных сделок, основанных на дивергенции, диверсификации торговых рисков и фундаментального анализа.

Парный трейдинг использует расхождение в движении для одновременных сделок покупки/продажи в обоих инструментах с целью получить арбитражную прибыль, когда тренды снова совпадут.

При всей привлекательности такой стратегии, ее называют квазиарбитражем – коэффициент, равный 0,8 может вызвать расхождение пар до «бесконечности», убыток будет расти и никогда не сойдется в ноль. Активы с коэффициентом 100%, где схождение более надежно, редко предоставляют возможность совершить такие сделки. Поэтому трейдеры предпочитают использовать один из коррелирующих инструментов в качестве индикатора:

Определив поводыря в паре эмпирическими наблюдениями, сделки совершаются на дивергенциях в ведомом активе.

Несмотря на большое количество положительных закрытий подобных расхождений, поводырь, как и каждый индикатор, требует создания торговой системы с фильтрами ложных сделок, ограничениями убытка и определения уровня для фиксации прибыли.

Фундаментальный анализ используется по принципу схожести ценовой реакции на новости у двух скоррелированных инструментов.

Например, золото и доллар США реагируют одинаково на важные новости по инфляции ВВП, данных по рынку труда и процентной ставки.

В свою очередь сильный рост нефти может вызвать падение золота и увеличить стоимость CFD на акции добывающих компаний. Но они подчиняются общему тренду фондовых индексов, поэтому отреагируют, скорее всего, на их понижательную динамику, даже при росте цен на энергоносители.

Тема на форуме
Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий